C2 C4 C14	1142(7)	04 010 05	100 0 101
$C_{5} = C_{4} = C_{14}$	114.2 (7)	04-018-05	127.3 (9)
$C_{3} - C_{4} - C_{14}$	113.9 (6)	04 - 018 - 019	109.1 (7)
$C_{4} = C_{5} = C_{10}$	113.9 (3)	03-018-019	123.5 (7)
$C_{4} = C_{5} = C_{10}$	114.9 (6)	06-019-018	112.7 (7)
C_{0}	111.0 (5)	06-019-020	61.5 (6)
	113.0 (6)	06-019-021	113.6(7)
C6-C7-C8	114.4 (7)	C18—C19—C20	115.1 (8)
C6-C/-CII	124.0 (7)	C18—C19—C21	117.1 (7)
C8-C/-CII	121.5 (7)	C20-C19-C21	123 (1)
01	122.5 (8)	O6—C20—C19	59.6 (5)
01-C8-C9	122.3 (7)	O6—C20—C22	114(1)
C7—C8—C9	115.2 (6)	C19C20C22	127 (1)
C8-C9-C10	114.4 (6)		
O1—C8—C7—C6	139.2 (9)	C3-C2-C1-C10	56.7 (9)
01—C8—C7—C11	-39(1)	C3-C4-02-C16	-58.5 (8)
O1-C8-C9-C10	-131.2 (8)	C3-C4-C5-C6	179.6 (6)
02—C4—C3—O4	-37.5(7)	C3-C4-C5-C10	49.1 (8)
02-C4-C3-C2	-159.6(6)	C4-02-C16-C17	- 176.2 (7)
02-C4-C5-C6	-63.0(6)	C4-C3-04-C18	151.4 (6)
02-C4-C5-C10	166.4 (5)	C4-C5-C6-C7	172.9 (6)
O3-C16-O2-C4	6(1)	C4-C5-C10-C9	- 169.2 (6)
04-C3-C2-C1	66.9 (9)	C4-C5-C10-C15	71.5 (8)
04—C3—C4—C5	71.3 (6)	C5-C4-02-C16	-175.2(6)
04-C3-C4-C14	-158.3(5)	C5-C6-C7-C8	43.9 (9)
04-C18-C19-06	-179.3(6)	C5-C6-C7-C11	-138.1(8)
O4-C18-C19-C20	-111.3(8)	C5C10C9C8	-56.7 (8)
O4-C18-C19-C21	46(1)	C6-C5-C4-C14	49.1 (8)
O5-C18-O4-C3	7(1)	C6-C5-C10-C9	59.1 (8)
O5-C18-C19-O6	3(1)	C6-C5-C10-C15	-60.2(9)
O5-C18-C19-C20	71(1)	C6—C7—C8—C9	-41(1)
O5-C18-C19-C21	-132(1)	C6-C7-C11-C12	180.0 (7)
O6-C19-C20-C22	99(1)	C6-C7-C11-C13	3(1)
O6-C20-C19-C18	-103.3(9)	C7-C6-C5-C10	- 54.9 (9)
O6-C20-C19-C21	101 (1)	C7-C8-C9-C10	49(1)
C1-C2-C3-C4	55(1)	C8—C7—C11—C12	-2(1)
C1-C10-C5-C4	-50.4(8)	C8-C7-C11-C13	-179.4(8)
C1-C10-C5-C6	177.9 (6)	C8-C9-C10-C15	66.8 (8)
C1-C10-C9-C8	-174.6(6)	C9-C8-C7-C11	140.9 (8)
C2-C1-C10C5	54.5 (9)	C10C5C4C14	-81.5(7)
C2-C1-C10-C9	170.9 (6)	C14-C4-02-C16	66.7 (8)
C2C1C10C15	-70.9 (8)	C18-C19-O6-C20	107.3 (9)
C2-C3-04-C18	-83.0(7)	C18-C19-C20-C22	-5(1)
C2—C3—C4—C5	-50.8 (9)	C19-06-C20-C22	-121(1)
C2-C3-C4-C14	79.6 (8)	C20-06-C19-C21	-117(1)
C3-04-C18-C19	-1705(6)	$C_{21} - C_{19} - C_{20} - C_{22}$	- 161 (1)

All non-H atoms were refined with anisotropic displacement parameters. H atoms were included in the difference Fourier map locations or at calculated positions with isotropic displacement parameters estimated from the displacement parameter of the adjacent C atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: TEXSAN; MITHRIL (Gilmore, 1984). Program(s) used to refine structure: LS TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976); PLUTO (Motherwell & Clegg, 1978). Software used to prepare material for publication: PLATON (Spek, 1990).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1143). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Ahmad, V. U., Farooqui, T. A., Fizza, K., Sultana, A. & Khatoon, R. (1992). J. Nat. Prod. 55, 730–735.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Ahmad, V. U., Farooqui, T. A., Sultana, A., Fizza, K. & Khatoon, R. (1992). *Phytochemistry*, **31**, 2888–2890.
- Ahmad, V. U., Fizza, K. & Amber, A.-Ur-R. (1989). J. Nat. Prod. 52, 861–863.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46,
- Ivie, R. A., Watson, W. H. & Dominguez, X. A. (1974). Acta Cryst. B30, 2891–2893.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
- Mukhopadhyay, S., Cordell, G. A., Ruangrungsi, N., Rodkird, S., Tantivatana, P. & Hylands, P. J. (1983). J. Nat. Prod. 46, 671– 674.
- Nakanishi, K., Crouch, R., Miura, I., Dominguez, X. A., Zamudio, A. & Villarreal, R. (1974). J. Am. Chem. Soc. 96, 609-611.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Spek, A. L. (1990). Acta Cryst. A46, C-34
- Uchiyama, T., Miyase, T., Ueno, A. & Usmanghani, K. (1991). *Phytochemistry*, **30**, 655-657.

Acta Cryst. (1996). C52, 237-244

Structural Aspects of the Nucleophilic Attack of Ketone Enolate on Dehydrodihydropyran

Sandra Ianelli,^{*a*} Mario Nardelli,^{*a**} Daniele Belletti,^{*a*} Brigitte Jamart-Grégoire,^{*b*} Sophie Mercier-Girardot^{*b*} and Paul Caubère^{*b*}

^aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy, and ^bLaboratoire de Chimie Organique 1, UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France

(Received 21 December 1994; accepted 24 July 1995)

Abstract

The results of the crystal structure analyses of (6RS, 7SR, 8RS)-7-methyl-8-phenyl-3-oxabicyclo[4.2.0]oct-1-en-8-ol (C₁₄H₁₆O₂), (1SR, 2RS, 8RS)-8-methylthio-3oxatricyclo[6.4.0.0^{2,7}]dodec-6-en-1-ol (C₁₂H₁₈O₂S) and (1RS, 2RS, 6SR, 7SR, 8RS)-8-methyl-3-oxatricyclo[6.4.0.0^{2,7}]dodeca-1, 6, 7-triol (C₁₂H₂₀O₄) allow interpretation of the nucleophilic attack reactions of ketone enolates on the short-lived dehydrodihydropyran intermediate, showing that the presence of the O atom influences the reactivity of the dienic system. The structures and conformations of the above compounds are discussed.

Comment

We have shown previously (Jamart-Grégoire, Grand, Ianelli, Nardelli & Caubère, 1990) that dehydrodihydropyran (2) can easily be generated from 3-bromodihydropyran (1) and a complex base (Caubère, 1978, 1991). In addition, we showed that, under the reaction conditions defined, nucleophiles such as ketone enolates condensed easily with the short-lived intermediate (2).

Taking into account the nature of (2), the same type of behaviour as observed for 1,2-cyclohexadienes (Caubère & Brunet, 1972; Brunet, Fixari & Caubère, 1974) could be expected, with nucleophilic attack of the ketone enolate at the C3 position followed by a cyclization of the anionic intermediate. However, the presence of the O atom in the ring could cause some perturbation leading to alternative attacks from the diene system. In reality, depending on the nature of the ketone enolate, attack at the C3 and/or C4 positions was observed, as shown below. Moreover, it was also observed that (4) and (7) could evolve differently to give ketone derivatives (Jamart-Grégoire, Grand, Ianelli, Nardelli & Caubère, 1990).

With respect to the reactions above, the following questions must be answered: What is the stereochemistry of (5) and in particular does it come from a *syn* addition of (2) on the ketone enolate? And, in the absence of information about the reactivity of (2), were the structures attributed to the completely unexpected compound (8) correct and what was their stereochemistry?

The answer to the first question was easily obtained through the usual spectroscopic data as far as the unsubstituted ketone enolates were used (R or $R^1 = H$). Unfortunately, no such information could be obtained

with α -substituted ketones (*R* and $R^1 \neq H$), so the X-ray crystal structure analysis of compounds (9) and (10) was performed, the latter compound being studied to infer the stereochemistry of the liquid compound (10*a*).

Regarding the second question, we were lucky enough to obtain single crystals of (8) ($R = CH_3$, $R^2 = Ph$) suitable for X-ray crystal structure analysis.

The results of these structure analyses, illustrated in the present paper, are of interest as they allow definition of the structures of analogous compounds obtained according to the elimination-addition reaction of the scheme above, through comparison of their spectroscopic data. Moreover, they show that the *syn* addition of ketone enolates with the short-lived 1,2dienes seems to be the rule. More importantly, they definitively establish that nucleophilic attacks on the C4 position of (2) may take place, showing the dramatic influence of the presence of the O atom on the reactivity of the dienic system.

Fig. 1 shows the *ORTEP* (Johnson, 1965) drawings of the molecules of the three compounds. It should be noted that, while both enantiomeric species are present in the crystals of compounds (9) and (10) as their space groups are centrosymmetric, in the case of compound (8), the two enantiomers do not co-crystallize and only one is present in the crystal. For the crystals of (8), the anomalous-scattering effects were not large enough to allow assignment of the absolute configuration [the value of Flack's (1983) parameter was x = -0.3 (4)], so that assigned in Fig. 1 is one of the two possible.

The geometry of the three molecules is described in Tables 2, 4 and 6, respectively, while Table 7 gives the relevant parameters describing the conformation of the three ring systems in the three molecules. The presence of the double bond in the dihydropyran ring of compounds (8) and (9) reduces the tilting of the plane through ring A with respect to that through the central cyclobutane ring B.

The conformation of compound (8) can be deduced from the torsion angles in Table 2, which show that the C1—C8 bond is (–)anticlinal to C2—C3, (+)synperiplanar to C7—H7 [C8—C1—C7—H7 = $18 (2)^{\circ}$] and (+)anticlinal to C7—C14, which is (+)synperiplanar to C1—O1.

In compounds (9) and (10), the system of fused tricycles differs mainly in the presence of the double bond in ring A of compound (9), which causes bond C1—C2 to be (-)synperiplanar to C7—C8 (Table 4), while in compound (10) C1—C2 is (-)antiperiplanar to C7—C8 (Table 6). Another relevant difference in

Fig. 1. ORTEP drawings of the molecules of compounds (8), (9) and (10). Ellipsoids are plotted at the 50% probability level.

the conformation of these two systems of fused rings is observed for bond C5—O2 which is (+)synperiplanar to C6—C11 in compound (9) (Table 4) and (+)anticlinal in compound (10) (Table 6).

The substituent-carrying side of the cyclobutane ring [C1-C7 for (8), C6-C7 for (9) and (10)] is significantly longer than the other three sides in all three compounds, in agreement with the results of the molecular-mechanics calculations (Tables 2, 4 and 6).

To check the reliability of the structural parameters describing the geometry of the three molecules, particularly for compound (10) whose analysis gave a quite unsatisfactory R value (see *Experimental*), and to see how packing forces in the crystal influence the molecular conformation, molecular-mechanics calculations were carried out using both MMX and MM+ force fields of the PCMODEL (Serena Software, 1989) and HYPERCHEM (Autodesk, Inc., 1992) systems of programs, respectively. In these calculations, isolated molecules were considered and program default parameters were used, starting the energy-minimization process from the molecular structures found experimentally by X-ray diffraction analysis. The results in terms of bond distances, bond angles and torsion angles are compared with those from the experimental analysis in Tables 2, 4 and 6. From this comparison, the following general comments can be made: (i) a rough general evaluation of the disagreement between the experimental and calculated models is given by the averages of the absolute values of the differences $|\Delta|$ (Table 9); (ii) concerning bond distances, negative differences can be justified by the fact that the experimental bond distances are not corrected for thermal motion; (iii) some relevant differences in bond angles are observed when atoms involved in hydrogen bonding or belonging to the cyclobutane ring are considered; (iv) the torsion angles are the parameters showing the largest discrepancies, which can be justified by the packing interactions not considered in the calculated models; (v) it is surprising to find that the lowest differences are observed with compound (10) whose diffraction results, in terms of the R index, are the least accurate.

The orientation of the phenyl ring about the C1— C8 bond in compound (8) is defined by the torsion angles about this bond; the differences between the observed and calculated values found for these angles in the isolated molecule (Table 2) are indicative that there is some influence of the packing forces. This finding is in agreement with the non-bonded energy profile, calculated by rotating the phenyl ring about C1—C8 in the isolated molecule, which shows a minimum shifted by *ca* 7° with respect to the position found for the molecule in the crystal. A similar situation is found for the orientation of the methylthio group in the molecule of compound (9), which is defined by the torsion angles about the C7—S1 bond (Table 4). Also in this case, the differences are only a few degrees and the non-bonded 01

02 Cl

C2

C3 C4

C5

C6

C7 **C**8

C9

C10

C11 C12

C13

C14

energy profile shows a wide minimum shifted by $ca 10^{\circ}$ with respect to the position found in the crystal.

The orientation of the hydroxyl group in compounds (8) and (9) is determined by the hydrogen bond it forms as a donor towards the pyran O atom and the methylthio S atom of an adjacent molecule, respectively (Table 8). These bonds, together with normal van der Waals interactions, are responsible for the packing in the crystals. In compound (10), the hydroxyls O1-H1O and O3-H3O are both involved, as donor, in intraand intermolecular bifurcated hydrogen bonds of the type O—H···O, while the O4—H4O hydroxyl group forms only an intermolecular hydrogen bond of this type. Intra- and intermolecular interactions of the type C— $H \cdot \cdot \cdot O$, which can be considered as weak hydrogen bonds (Taylor & Kennard, 1982; Berkovitch-Yellin & Leiserowitz, 1984), are also observed (Table 8).

The analysis of 'thermal' motion of the molecules in the crystals of the three compounds, carried out in terms of the Schomaker & Trueblood (1968) TLS rigid-body approximation using the THMV program (Trueblood, 1984), shows that there are no cases of possible disorder, giving quite satisfactory agreements between the observed and calculated atomic displacement parameters, particularly for compound (9). The overall residual disagreement index wR_{II} is 0.085, 0.055 and 0.094 for (8), (9) and (10), respectively, and these improve to 0.057, 0.039 and 0.067, respectively, if internal motions are considered according to Dunitz & White (1973). These findings for compound (10) are also indicative of the reliability of the results of the diffraction analysis in spite of the inferior value of the R index.

Experimental

Compound (8)

Crystal data

 $C_{14}H_{16}O_2$ Cu $K\alpha$ radiation $M_r = 216.28$ $\lambda = 1.54178 \text{ Å}$ Orthorhombic Cell parameters from $P2_{1}2_{1}2_{1}$ reflections a = 16.305(7) Å $\theta = 23 - 40^{\circ}$ $\mu = 0.644 \text{ mm}^{-1}$ b = 10.366 (4) Åc = 6.900(4) Å T = 293 (2) K $V = 1166.2 (9) \text{ Å}^3$ Tablets Z = 4 $0.36 \times 0.29 \times 0.21$ $D_x = 1.232 \text{ Mg m}^{-3}$ Colourless Data collection Siemens-AED diffractometer $\theta_{\rm max} = 70.12^{\circ}$ $h = -19 \rightarrow 19$ $\theta/2\theta$ scans $k = -12 \rightarrow 0$ Absorption correction: $l = -8 \rightarrow 0$ none 2508 measured reflections 1 standard reflection 2209 independent reflections monitored every 5 1821 observed reflections reflections $[I > 2\sigma(I)]$ intensity variation $R_{int} = 0.0525$ statistical fluctu

Refinement

Refinement on F^2	Extinction correction:
R(F) = 0.0429	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0975$	1993)
S = 1.107	Extinction coefficient:
2203 reflections	0.107 (5)
210 parameters	Atomic scattering factors
All H-atom parameters	from International Tables
refined	for Crystallography (1992,
$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2]$	Vol. C, Tables 4.2.6.8,
+ 0.1849 <i>P</i>]	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} < 0.001$	Flack (1983)
$\Delta \rho_{\rm max} = 0.214 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = -0.3 (4)
$\Delta \rho_{\rm min} = -0.163 \ {\rm e} \ {\rm \AA}^{-3}$	-

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\tilde{A}^2) for (8)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

х	у	Ζ	U_{ea}
0.1200(1)	0.7085 (2)	0.1529 (3)	0.0564 (6)
0.3118 (1)	0.5375 (2)	-0.2144 (4)	0.0750 (8)
0.1687(1)	0.7806 (2)	0.0209 (3)	0.0440 (6)
0.2267 (1)	0.7074 (2)	-0.1091 (4)	0.0476 (6)
0.2376 (2)	0.5852 (2)	-0.1503 (5)	0.0617 (9)
0.3746 (2)	0.6342 (3)	-0.2406 (5)	0.0642 (9)
0.3767 (2)	0.7320 (3)	-0.0774 (5)	0.0579 (8)
0.2952 (1)	0.8034 (2)	-0.0807 (4)	0.0475 (7)
0.2480(1)	0.8508 (2)	0.1023 (4)	0.0481 (7)
0.1105(1)	0.8727 (2)	-0.0799 (4)	0.0462 (7)
0.0708 (1)	0.9679 (2)	0.0295 (5)	0.0587 (8)
0.0156(2)	1.0522 (3)	-0.0601 (6)	0.0725 (12)
0.0006 (2)	1.0429 (3)	-0.2547 (7)	0.0802 (12)
0.0396 (2)	0.9510 (4)	-0.3618 (6)	0.0802 (13)
0.0949 (2)	0.8654 (3)	-0.2763 (4)	0.0603 (9)
0.2775 (2)	0.7986(3)	0.2933 (4)	0.0625 (9)

Table 2. Comparison of bond distances (Å), bond angles (°) and selected torsion angles (°) in the molecule of compound (8)

E.s.d.'s in parentheses. MMX = force field of PCMODEL; MM+ = force field of HYPERCHEM; $\Delta = obs. - calc.$

n 30		X-ray	ММХ	MM+
		obs.	calc. Δ	calc. Δ
	01—C1	1.421 (3)	1.408 0.013	1.431 -0.010
	O2—C3	1.380(3)	1.357 0.023	1.365 0.015
	O2—C4	1.443 (4)	1.424 0.019	1.416 0.027
	C1—C2	1.508 (3)	1.503 0.005	1.454 0.054
	C1—C7	1.586(3)	1.578 0.008	i.582 0.004
mm	C1—C8	1.515 (3)	1.509 0.006	1.478 0.037
	C2—C3	1.311 (3)	1.331 -0.020	1.337 -0.026
	C2—C6	1.509(3)	1.500 0.009	1.445 0.064
	C4—C5	1.516(4)	1.546 -0.030	1.541 -0.025
	C5—C6	1.521 (3)	1.530 -0.009	1.545 - 0.024
	C6—C7	1.559 (4)	1.557 0.002	1.571 -0.012
	C7-C14	1.504 (4)	1.530 -0.026	1.548 -0.044
	C8—C9	1.401 (3)	1.345 0.056	1.399 0.002
	C8-C13	1.381 (4)	1.345 0.036	1.400 -0.019
	C9-C10	1.399 (4)	1.342 0.057	1.396 0.003
1	C10-C11	1.368 (6)	1.341 0.027	1.395 -0.027
	C11-C12	1.363 (5)	1.341 0.022	1.395 -0.032
50	C12—C13	1.396 (5)	1.342 0.054	1.396 0.000
	C3—O2—C4	114.4 (2)	121.0 -6.6	116.5 -2.1
i: within	01-C1-C8	106.0(2)	113.0 -7.0	112.2 -6.2
ation	01-C1-C7	118.0 (2)	113.2 4.8	114.5 3.5

S1 01 02 Cl C2 C2 C3 C4 C5 C6

C7 C8 C9

C10

C11

C12

0.2480 (2)

01-C1-C2	117.8 (2)	112.1 5.7	113.1	4.7
C7—C1—C8	112.6 (2)	114.7 -2.1	114.1	-1.5
C2-C1-C8	115.9 (2)	117.0 -1.1	114.9	1.0
C2-C1-C7	86.0 (2)	83.9 2.1	85.5	0.5
C1-C2-C6	93.2 (2)	94.5 -1.3	99.2	6.0
C1—C2—C3	134.4 (2)	139.0 -4.6	128.3	6.1
C3—C2—C6	124.4 (2)	126.3 -1.9	123.7	0.7
O2—C3—C2	122.3 (2)	119.2 3.1	123.5	-1.2
O2—C4—C5	112.8 (2)	111.5 1.3	111.9	0.9
C4—C5—C6	107.1 (2)	108.1 -1.0	107.0	0.1
C2—C6—C5	109.2 (2)	104.5 4.7	107.0	2.2
C5—C6—C7	125.0 (2)	125.9 -0.9	121.9	3.1
C2—C6—C7	86.9 (2)	84.8 2.1	86.2	0.7
C1—C7—C6	88.4 (2)	89.5 -1.1	88.8	-0.4
C6C7C14	116.0 (2)	115.3 0.7	116.5	-0.5
C1—C7—C14	114.0 (2)	116.1 -2.1	115.8	-1.8
C1—C8—C13	122.1 (2)	122.2 -0.1	121.5	0.6
C1-C8-C9	119.1 (2)	119.5 -0.4	119.5	-0.4
C9—C8—C13	118.8 (2)	118.2 0.6	118.9	-0.1
C8–C9–C10	120.0 (2)	121.2 -1.2	120.6	-0.6
C9—C10—C11	120.3 (3)	119.9 0.4	120.0	0.3
C10-C11-C12	119.9 (4)	119.6 0.3	119.7	0.2
C11—C12—C13	121.1 (3)	120.1 1.0	120.1	1.0
C8—C13—C12	119.9 (3)	121.0 -1.1	120.5	-0.6
01—C1—C8—C13	-115.5 (2)	-110.8 -4.7	-103.9	-11.6
01-C1-C7-C14	19.0 (3)	13.0 6.0	-1.8	20.8
01—C1—C2—C3	10.3 (4)	43.3 -33.0	28.6	-18.3
C7—C1—C8—C9	-66.3 (3)	-63.2 -3.1	-60.9	-5.4
C2-C1-C8-C9	-163.1 (2)	-159.1 -4.0	-157.4	-5.7
C7—C1—C8—C13	114.1 (2)	117.5 -3.4	123.7	-9.6
C2-C1-C7-C14	-100.6 (2)	-98.5 -2.1	-115.2	14.6
C8—C1—C2—C3	-116.8 (3)	-89.4 - 27.4	-102.1	-14.7
C8-C1-C7-C14	143.0 (2)	144.6 -1.6	129.5	13.5
C3-C2-C6C7	-134.5 (3)	-156.3 21.8	-145.4	10.9
C5-C6-C7-C14	-12.6 (3)	-5.1 -7.5	6.8	-19.4
C2-C6-C7-C14	98.8 (2)	99.1 -0.3	114.6	-15.8

Distances: $|\Delta|_{\text{max}} MMX = 0.057 \text{ Å}, MM + = 0.064 \text{ Å}; \text{ angles: } |\Delta|_{\text{max}}$ $MMX = 7.0^{\circ}, MM + = 6.2^{\circ}; \text{ torsions: } |\Delta|_{\text{max}} MMX = 33.0^{\circ}, MM + =$ 20.8°.

Compound (9)

Crystal data

$C_{12}H_{18}O_{2}S$ $M_{r} = 226.33$ Triclinic $P\overline{1}$ $a = 11.031 (2) \text{ Å}$ $b = 8.300 (1) \text{ Å}$ $c = 6.625 (1) \text{ Å}$ $\alpha = 102.37 (1)^{\circ}$ $\beta = 93.66 (1)^{\circ}$ $\gamma = 98.31 (1)^{\circ}$ $V = 583.4 (2) \text{ Å}^{3}$ $Z = 2$	Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 30 reflections $\theta = 25-39^{\circ}$ $\mu = 2.240 \text{ mm}^{-1}$ T = 293 (2) K Prisms $0.43 \times 0.33 \times 0.28 \text{ mm}$ Colourless
Z = 2 $D_x = 1.288 \text{ Mg m}^{-3}$	

		C5—C6 C6—C7	1.553 (2) 1.585 (2)	1.560 1.581	-0.007 0.004	1.576 1.592	-0.02 -0.00
Data collection		C6-C11	1.524 (2)	1.536	-0.012	1.555	-0.03
Siemens AFD diffractometer	$\theta_{\rm max} = 70.24^{\circ}$	C7—C8	1.528 (2)	1.531	-0.003	1.553	0.02
	h = 12 + 12	C8—C9	1.528 (3)	1.532	-0.004	1.532	-0.00
0/20 scans	$n = -13 \rightarrow 13$	C9-C10	1.517 (3)	1.533	-0.016	1.531	-0.01
Absorption correction:	$k = -10 \rightarrow 9$	C10-C11	1.528 (3)	1.531	-0.003	1.529	-0.00
none	$l = -1 \rightarrow 8$	C7—S1—C12	99.7 (1)	100.8	-1.1	98.4	1.3
2231 measured reflections	1 standard reflection	C4O2C5	106.8 (1)	108.3	-1.5	108.9	-2.1
2218 independent reflections	monitored every 50	C5—C1—C7	92.3 (1)	94.3	-2.0	99.1	-6.8
1013 observed reflections	reflections	C2-C1-C7	139.3 (1)	139.2	0.1	130.5	8.8
	Tenections	C2-C1-C5	124.1 (1)	126.3	-2.2	124.4	-0.3
$[I > 2\sigma(I)]$	intensity variation: within	C1-C2-C3	117.6(1)	116.3	1.3	118.4	-0.8
$R_{\rm int} = 0.0090$	statistical fluctuation	C2-C3-C4	112.8 (2)	113.5	-0.7	112.2	0.6

Refinement	
Refinement on F^2 R(F) = 0.0322 $wR(F^2) = 0.0899$ S = 1.091 2212 reflections 209 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0626P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.268 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.323 \text{ e} \text{ Å}^{-3}$	Extinction correction: SHELXL93 (Sheldrick, 1993) Extinction coefficient: 0.0118 (16) Atomic scattering factors from International Tables for X-ray Crystallography [1974, Vol. IV, Tables 2.2A, 2.3.1 (S, O, C), 2.2C (H)]

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (9)

U_{eq}			
x	у	Z	U_{eq}
0.31535 (3)	0.10498 (4)	0.31198 (6)	0.0436(1)
0.3930(1)	-0.0501 (2)	0.6351 (2)	0.0469 (4)
0.09865 (9)	-0.2670 (2)	0.6173 (2)	0.0486 (4)
0.1441 (1)	-0.1730 (2)	0.3018 (2)	0.0391 (5)
0.0430 (2)	-0.2634 (2)	0.1948 (3)	0.0479 (5)
-0.0586 (2)	-0.3264 (2)	0.3156 (3)	0.0556 (6)
-0.0281 (2)	-0.2668 (3)	0.5488 (3)	0.0537 (6)
0.1712(1)	-0.1480 (2)	0.5310(2)	0.0386 (5)
0.3060(1)	-0.1680 (2)	0.4906 (2)	0.0378 (5)
0.2783 (1)	-0.1235 (2)	0.2730(2)	0.0379 (5)
0.3337 (2)	-0.2127 (2)	0.0831 (3)	0.0477 (6)
0.3459 (2)	-0.3926 (2)	0.0896 (3)	0.0548 (7)
0.4103 (2)	-0.4007 (2)	0.2956 (3)	0.0522 (6)
0.3305 (2)	-0.3465 (2)	0.4700 (3)	0.0469 (6)

0.0686 (4)

0.0613 (8)

Table 4. Comparison of bond distances (Å), bond angles (°) and selected torsion angles (°) in the molecule of compound (9)

0.1296 (3)

E.s.d.'s in parentheses. MMX = force field of PCMODEL; MM+ = force
field of HYPERCHEM; $\Delta = obs calc.$

field of HYPER($CHEM: \Delta = obs$	- calc.	DEL, MIM	+ = 10100
	X-ray	ММХ	MM+	
	obs.	calc. Δ	calc.	Δ
S1—C7	1.839 (2)	1.829 0.010	1.799	0.040
S1-C12	1.796 (3)	1.812 -0.016	1.813	-0.017
O1—C6	1.416 (2)	1.412 0.004	1.432	-0.016
O2—C4	1.443 (2)	1.432 0.011	1.415	0.028
O2—C5	1.419 (2)	1.415 0.004	1.436	-0.017
C1—C2	1.319 (2)	1.330 -0.011	1.337	-0.018
C1C5	1.492 (2)	1.500 - 0.008	1.445	0.047
C1—C7	1.513 (2)	1.504 0.009	1.454	0.059
C2—C3	1.514 (3)	1.507 0.007	1.507	0.007
C3—C4	1.518 (3)	1.550 -0.032	1.540	-0.022
C5—C6	1.553 (2)	1.560 -0.007	1.576	-0.023
C6—C7	1.585 (2)	1.581 0.004	1.592	-0.007
C6-C11	1.524 (2)	1.536 -0.012	1.555	-0.031
C7—C8	1.528 (2)	1.531 -0.003	1.553	-0.025
C8—C9	1.528 (3)	1.532 -0.004	1.532	-0.004
C9-C10	1.517 (3)	1.533 -0.016	1.531	-0.014
C10—C11	1.528 (3)	1.531 -0.003	1.529	-0.001
C7—S1—C12	99.7 (1)	100.8 -1.1	98.4	1.3
C402C5	106.8 (1)	108.3 -1.5	108.9	-2.1
C5-C1-C7	92.3 (1)	94.3 -2.0	99.1	-6.8
C2-C1-C7	139.3 (1)	139.2 0.1	130.5	8.8
~ ~ ~				

refined

02—C4—C3	113.5 (1)	112.6	0.9	110.9	2.6	226
02-C5-C1	113.8(1)	108.0	5.8	110.8	3.0	A 11
C1-C5-C6	87.3 (1)	83.9	3.4	85.5	1.8	All
O2-C5-C6	119.6 (1)	120.2	0.6	119.3	0.3	r
01—C6—C5	112.4 (1)	110.7	1.7	112.5	-0.1	w =
C5-C6-C11	113.3 (1)	114.6	-1.3	112.3	1.0	
C5-C6-C7	87.3 (1)	89.0	-1.7	88.3	-1.0	u
01-C6-C11	112.6(1)	110.9	1.7	111.2	1.4	· ^
O1-C6-C7	116.1 (1)	112.9	3.2	113.6	2.5	(Δ)
C7-C6-C11	112.8 (1)	117.1	-4.3	117.2	-4.4	
C1-C7-C6	85.5 (1)	83.0	2.5	84.6	0.9	Tat
S1—C7—C6	107.4 (1)	114.0	-6.6	112.0	-4.6	
\$1—C7—C1	109.8 (1)	110.2	-0.4	109.7	0.1	
C6—C7—C8	119.4 (1)	116.4	3.0	116.4	3.0	
C1-C7-C8	120.4 (1)	117.4	3.0	117.9	2.5	
S1—C7—C8	111.4 (1)	112.6	-1.2	113.1	-1.7	
C7—C8—C9	112.5 (1)	115.0	-2.5	114.7	-2.2	01
C8-C9-C10	111.1 (2)	110.4	0.7	109.4	1.7	02
C9-C10-C11	109.5 (2)	108.7	0.8	108.2	1.3	03
C6-C11-C10	113.2 (1)	111.7	1.5	112.9	0.3	04
C12S1C7C1	-76.9 (1)	-73.0	-3.9	-70.8	-6.1	C1
C12-S1-C7-C6	-168.4 (1)	-164.3	-4.1	-163.0	-5.4	C2
C12—S1—C7—C8	59.0 (1)	60.2	-1.2	63.0	-4.0	C3
C4	-153.5 (1)	-154.4	0.9	-154.9	1.4	C4
C2-C1-C7-S1	119.1 (2)	95.7	23.4	108.2	10.9	C5
C2-C1-C7-C8	-12.3 (3)	-35.1	22.8	-23.2	10.9	C6
C5-C1-C2-C3	8.3 (3)	-3.0	11.3	4.2	4.1	C7
02-C5-C6-01	-106.7 (2)	-115.6	8.9	122.5	15.8	C8
02—C5—C6—C7	136.2 (1)	130.2	6.0	122.7	13.5	C9
O2-C5-C6-C11	22.4 (2)	10.7	11.7	3.9	18.5	C10
01-C6-C7-S1	-24.4 (2)	-25.8	1.4	-15.9	-8.5	C11
O1—C6—C7—C8	103.8 (2)	107.9	-4.1	116.4	-12.6	C12

226 parameters Extinction coefficient: All H-atom parameters 0.001 (0) Atomic scattering factors $w = 1/[\sigma^2(F_o^2) + (0.0598P)^2$ from International Tables + 3.1057*P*] for Crystallography (1992, where $P = (F_o^2 + 2F_c^2)/3$ Vol. C, Tables 4.2.6.8, $(\Delta/\sigma)_{\rm max} < 0.001$ 6.1.1.4)

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å^2) for (10)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

x	у	Z	U_{eq}
0.8452 (2)	0.3368 (3)	0.2736 (3)	0.0510 (10)
0.7566 (2)	0.1306 (3)	0.2805 (3)	0.0548 (10)
0.7777 (2)	0.1020 (2)	0.0008 (3)	0.0477 (9)
0.7127 (2)	0.3367 (3)	-0.0062 (3)	0.0675 (12)
0.7935 (2)	0.1927 (3)	0.0859 (4)	0.0405 (12)
0.7316 (2)	0.2823 (4)	0.1002 (4)	0.0498 (14)
0.6690 (3)	0.2078 (6)	0.1485 (5)	0.0682 (19)
0.6910(3)	0.1015 (6)	0.2268 (5)	0.0686 (19)
0.8110 (2)	0.1319 (4)	0.1988 (4)	0.0425 (14)
0.8709 (2)	0.2279 (3)	0.2166 (4)	0.0456 (14)
0.8695 (2)	0.2512 (4)	0.0865 (4)	0.0471 (13)
0.9225 (3)	0.1642 (6)	0.0254 (6)	0.072 (2)
0.9926 (3)	0.1591 (7)	0.0821 (7)	0.084 (3)
0.9848 (3)	0.1018 (6)	0.1970 (8)	0.093 (3)
0.9396 (3)	0.1854 (5)	0.2726 (6)	0.0689 (19)
0.8796 (4)	0.3867 (5)	0.0478 (6)	0.071 (20)

Distances: $|\Delta|_{\text{max}} MMX = 0.032 \text{ Å}, MM+ = 0.059 \text{ Å}; \text{ angles: } |\Delta|_{\text{max}}$ $MMX = 6.6^{\circ}, MM + = 8.8^{\circ}; \text{ torsions: } |\Delta|_{\text{max}} MMX = 23.4^{\circ}, MM + =$ 18.5°.

Compound (10)

Crystal data

$C_{12}H_{20}O_4$	Cu $K\alpha$ radiation
$M_r = 228.29$	$\lambda = 1.54178 \text{ Å}$
Orthorhombic	Cell parameters f
Pcab (No. 61)	reflections
<i>a</i> = 18.992 (7) Å	$\theta = 24 - 40^{\circ}$
b = 10.595 (3) Å	$\mu = 0.773 \text{ mm}^{-1}$
c = 11.875 (5) Å	T = 293 (2) K
$V = 2389 (2) Å^3$	Thin tablets
Z = 8	$0.41 \times 0.33 \times 0.00$
$D_x = 1.269 \text{ Mg m}^{-3}$	Colourless

Data collection

Siemens AED diffractometer
$\theta/2\theta$ scans
Absorption correction:
none
4462 measured reflections
2277 independent reflections
2001 observed reflections
$[I > 2\sigma(I)]$
$R_{\rm int} = 0.0462$

Refinement

Refinement on F^2
R(F) = 0.1071
$wR(F^2) = 0.2100$
S = 1.265
2277 reflections

Table 6. Comparison of bond distances (Å), bond angles (°) and selected torsion angles (°) in the molecule of compound (10)

E.s.d.'s in parentheses. MMX = force field of PCMODEL; MM+ = force field of HYPERCHEM; $\Delta = obs. - calc.$

		X-ray	Λ	ИМХ	M	1M+
		obs.	calc.	Δ	calc.	Δ
$C \mathbf{u} \mathbf{K} \boldsymbol{\alpha}$ radiation	01—C6	1.424 (5)	1.414	0.010	1.436	-0.012
$\lambda = 1.54178 \text{ Å}$	O2—C4	1.432 (6)	1.422	0.010	1.411	0.021
Cell parameters from 30	O2—C5	1.418 (5)	1.418	0.000	1.437	-0.019
reflections	O3—C1	1.427 (5)	1.412	0.015	1.431	-0.004
	O4—C2	1.434 (6)	1.414	0.020	1.404	0.030
$\theta = 24 - 40^{\circ}$	C1—C2	1.519 (6)	1.533	-0.014	1.547	-0.028
$\mu = 0.773 \text{ mm}^{-1}$	C1—C5	1.524 (6)	1.553	-0.029	1.562	-0.038
T = 293 (2) K	C1—C7	1.571 (6)	1.563	0.008	1.577	-0.006
Thin tablets	C2C3	1.538 (7)	1.539	-0.001	1.536	0.002
$0.41 \times 0.33 \times 0.16$ mm	C3C4	1.519 (9)	1.542	-0.023	1.540	-0.021
	CS-C6	1.541 (6)	1.552	-0.011	1.561	-0.020
Colourless	C6—C7	1.565 (6)	1.562	0.003	1.574	-0.009
	C6-C11	1.531 (7)	1.531	0.000	1.547	-0.016
	07-08	1.546 (7)	1.545	0.001	1.561	-0.015
0 70.209	C/-CI2	1.520 (7)	1.533	-0.013	1.551	-0.031
$\theta_{\rm max} = 70.20^{\circ}$	C8-C9	1.494 (8)	1.532	-0.038	1.531	-0.037
$h = -23 \rightarrow 23$	C9C10	1.501 (12)	1.534	-0.033	1.533	-0.032
$k = -1 \rightarrow 12$	C10C11	1.525 (10)	1.530	-0.005	1.530	-0.005
$l = 0 \rightarrow 14$	C4C5	109.4 (3)	110.1	-0.7	109.8	-0.4
1 standard reflection	O3—C1—C2	109.7 (3)	109.6	0.1	110.7	-1.0
manifored avery 50	O3-C1-C5	112.6 (3)	110.4	2.2	112.7	-0.1
monitored every 50	O3—C1—C7	117.5 (3)	114.4	3.1	115.7	1.8
reflections	C2-C1-C5	109.6 (3)	110.5	-0.9	108.4	1.2
intensity variation: within	C2C1C7	117.6 (3)	121.6	-4.0	117.9	-0.3
statistical fluctuation	$C_{-C} - C_{-C}$	87.8 (3)	88.0	-0.2	89.4	-1.6
statistical nactuation	04 - 02 - 01	110.3 (3)	110.3	0.0	111.3	-1.0
	04-02-03	109.9 (4)	110.4	-0.5	109.6	0.3
	C3-C2-C1	108.6 (4)	108.7	-0.1	108.9	-0.3
$\Lambda_{0} = 0.241 \circ h^{-3}$	$C_2 - C_3 - C_4$	113.3 (5)	111.8	1.5	111.7	1.6
$\Delta p_{\text{max}} = 0.241 \text{ e A}$	02 - C4 - C3	110.7 (4)	110.8	-0.1	110.8	-0.1
$\Delta \rho_{\rm min} = -0.211 \ {\rm e} \ {\rm A}^{-3}$	02C5C1	116.5 (3)	113.1	3.4	113.6	2.9
Extinction correction:	02 - 05 - 06	116.8 (3)	113.7	3.1	114.0	2.8
SHELXL93 (Sheldrick		90.2 (3)	88.3	1.9	89.2	1.0
1003)		110.3 (3)	110.8	-0.5	109.2	1.1
177)	01-0-0/	109.6 (3)	111.3	-1.7	111.7	- 2.1

01C6C11	108.9 (3)	108.6 0.3	109.3	-0.4
C5-C6-C7	87.4 (3)	88.1 -0.7	89.6	-2.2
C5-C6-C11	119.6 (4)	117.9 1.7	117.2	2.4
C7-C6-C11	119.3 (4)	118.8 0.5	118.5	0.8
C1—C7—C6	87.6 (3)	87.6 0.0	88.2	-0.6
C1C7C8	111.2 (3)	113.5 -2.3	111.0	0.2
C1-C7-C12	119.2 (4)	115.4 3.8	116.9	2.3
C6C7C8	111.0 (4)	112.7 -1.7	114.0	- 3.0
C6C7C12	116.4 (4)	115.2 1.2	114.4	2.0
C8-C7-C12	109.8 (4)	110.7 -0.9	110.7	-0.9
C7C8C9	113.0 (4)	113.1 -0.1	112.9	0.1
C8-C9-C10	109.6 (6)	108.7 0.9	108.4	1.2
C9-C10-C11	110.9 (6)	109.7 1.2	109.5	1.4
C6C11C10	113.2 (4)	115.1 -1.9	114.6	-1.4
C4-02-C5-C1	40.8 (5)	52.5 -11.7	50.1	-9.3
C4-02-C5-C6	145.6 (4)	148.9 -3.3	152.8	-7.2
O3-C1-C2-O4	-53.7 (4)	-55.8 2.1	-54.1	0.4
O3-C1-C5-O2	-100.8 (4)	-108.4 7.6	-112.1	11.3
O3-C1-C7-C8	-22.5 (5)	-18.8 -3.7	-14.0	-8.5
C2-C1-C7-C12	-27.8 (6)	-24.9 -2.9	-20.0	- 7.8
O4-C2-C3-C4	153.3 (4)	160.2 -6.9	165.7	-12.4
02-C5-C6-01	-30.1 (5)	-16.9 -13.2	-23.7	-6.4
02-C5-C6-C11	97.3 (5)	102.3 -5.0	108.0	-10.7
C1-C5-C6-01	89.9 (3)	90.9 -1.0	98.7	-8.8
01-C6-C7-C1	-91.2 (3)	-90.6 -0.6	-96.6	5.4
O1-C6-C7-C12	30.4 (5)	26.5 3.9	22.3	8.1
C5-C6-C7-C8	-92.3 (4)	-93.6 1.3	-98.3	6.0

Distances: $|\Delta|_{max} MMX = 0.038 \text{ Å}$, MM+ = 0.038 Å; angles: $|\Delta|_{max} MMX = 3.8^{\circ}$, $MM+ = 3.0^{\circ}$; torsions: $|\Delta|_{max} MMX = 9.3^{\circ}$, $MM+ = 13.2^{\circ}$.

Table 7. Conformation of the rings and dihedral angles(°) of ring planes

 Q_T = total puckering amplitude (Å) (Cremer & Pople, 1975), DAP = minimum displacement asymmetry parameter (Nardelli, 1983*b*), HC = half chair, S = sofa, T = twist.

	Co	onform	1a-		
Ring Q_T	DAP	tion	A/B	B/C	A/C
Compound (8	3)				
A 0.522 (3)	D2(C3-C2) = 0.024(1)	HC			
B -0.0615 (5)		151.8 (1)	110.6(1)	107.3 (1)
C 0.007 (2)	1				
Compund (9)	I				
A 0.508 (2)	D2(C1-C2) = 0.0546(8)	HC			
B -0.0720 (5)		154.4 (1)	118.4 (1)	92.8 (1)
C 0.523 (2)	DS(C7) = 0.040(2)	S/HC			
	D2(C6-C7) = 0.037(1)				
Compound (1	10)				
A 0.749 (4)	$D_2(C_4-O_2) = 0.042(2)$	Т			
	D2(C3) = 0.032(1)				
B 0.070 (1))		135.2 (2)	117.7 (2)	149.7 (2)
C 0.524 (6)	DS(C6) = 0.013(3)	S/T			
	D2(C6-C11) = 0.073(2)				
	D2(C7-C6) = 0.055(2)				

Table 8. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	<i>D</i> —Н	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
Compound (8)				
01—H10· · · O2 ⁱ	0.88 (3)	2.11 (3)	2.929 (3)	154 (3)
Compound (9)				
01—H10· · ·S1 ^µ	0.83 (3)	2.51 (3)	3.321 (1)	164 (2)
Compound (10)				
01—H10···02	0.86 (6)	2.45 (5)	2.759 (4)	101 (4)
O3—H3O· · · O4	0.81 (6)	2.38 (6)	2.778 (4)	111 (5)
C2—H2· · ·O1	0.99 (4)	2.33 (4)	3.037 (6)	128 (3)
01H10· · ·04 ⁱⁱⁱ	0.86 (6)	2.04 (6)	2.838 (5)	153 (5)
O3—H3O· · · O2 [™]	0.81 (6)	2.04 (6)	2.713 (4)	140 (6)
O4—H4O· · ·O3 ^v	0.83 (9)	2.02 (9)	2.817 (4)	160 (9)
C5—H5· · ·O1 ^{vi}	0.92 (5)	2.35 (5)	3.209 (5)	155 (4)

Symmetry codes: (i) $\frac{1}{2} - x, 1 - y, \frac{1}{2} + z$; (ii) 1 - x, -y, 1 - z; (iii) $\frac{3}{2} - x, y, \frac{1}{2} + z$; (iv) $\frac{3}{2} - x, y, z - \frac{1}{2}$; (v) $\frac{3}{2} - x, \frac{1}{2} + y, -z$; (vi) $x, y - \frac{1}{2}, \frac{1}{2} - z$.

Table 9. Averages of the absolute differences $|\Delta|$

		(8)		(9)		(10)	
			Ave*		Ave*		Ave*
Distances (Å)	$ \Delta _{MMX}$	0.023	0.031	0.009	0.017	0.019	0.011
	$ \Delta _{MM_{+}}$	0.024		0.022		0.013	
Angles (°)	$ \Delta _{MMX}$	2.2	1.8	2.1	1.6	1.2	0.9
-	$ \Delta _{MM_{+}}$	1.7		2.1		1.3	
Torsions (°)	$ \Delta _{MMX}$	14.2	10.8	5.1	6.5	6.4	4.8
	$ \Delta _{MM^+}$	10.3		7.8		2.7	

* Ave = $\Delta |(|MMX| - |MM+|)|$.

The integrated intensities were obtained by a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) peak-profile analysis procedure. All reflections of the three compounds were corrected for Lorentz and polarization effects but not for absorption.

The three structures were solved by direct methods and refined by anisotropic full-matrix least squares. In all three cases, the H atoms were found from $\Delta \rho$ maps and refined isotropically. The crystals of compound (10) were of poor quality so the *R* index is not as good as for the other two compounds. Nevertheless, refinement proceeded smoothly for (10) (comprehensive of H atoms) giving a quite acceptable molecular geometry and anisotropic displacement parameters (see Tables 5–8 and *Comment*). Calculations were carried out on the ENCORE91 and GOULD–POWERNODE 6040 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma), and on a COMPAQ-486c portable computer.

For all compounds, data collection: local programs; cell refinement: *LQPARM* (Nardelli & Mangia, 1984); data reduction: local programs. Program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990) for (8) and (9); *SIR*92 (Altomare *et al.* 1994) for (10). For all compounds, program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *ORTEP* (Johnson, 1965); software used to prepare material for publication: *PARST* (Nardelli, 1983*a*); *PARSTCIF* (Nardelli, 1991).

Financial support from the European Community Commission under contract N.SC1000657 is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SZ1044). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, O., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435– 436.
- Autodesk, Inc. (1992). HYPERCHEM. Version 2.0. Autodesk, Inc., 2320 Marinship Way, Sansalito, CA 94965, USA.
- Belletti, D., Ugozzoli, F., Cantoni, A. & Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- Berkovitch-Yellin, L. & Leiserowitz, L. (1984). Acta Cryst. B40, 159-165.

Brunet, J. J., Fixari, B. & Caubère, P. (1974). Tetrahedron, 30, 1237-1243.

- Caubère, P. (1978). Top. Curr. Chem. 73, 48-124.
- Caubère, P. (1991). Rev. Heteroatom. Chem. 4, 78-139.
- Caubère, P. & Brunet, J. J. (1972). Tetrahedron, 28, 4835-4845.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Dunitz, J. D. & White, D. N. J. (1973). Acta Cryst. A29, 93–94.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Jamart-Grégoire, B., Grand, V., Ianelli, S., Nardelli, M. & Caubère,
- P. (1990). Tetrahedron Lett. pp. 7603-7606. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge
- National Laboratory, Tennessee, USA.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
- Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
- Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1991). PARSTCIF. Program for the Creation of a CIF from the Output of PARST. University of Parma, Italy.
- Nardelli, M. & Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
- Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
- Serena Software. (1989). *PCMODEL*. Version 4.0. Serena Software, Bloomington, IN 47402-3076, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Trueblood, K. N. (1984). THMV. Program for Thermal Motion Analysis. University of California, Los Angeles, USA.

Acta Cryst. (1996). C52, 244-246

(\pm)-*trans*-2-Benzoylcyclohexanecarboxylic Acid. Structure and Hydrogen-Bonding Pattern of a γ -Keto Acid

ROGER A. LALANCETTE, MARIE L. COTÉ AND HUGH W. THOMPSON

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA

(Received 16 August 1994; accepted 25 July 1995)

Abstract

In the title compound, $C_{14}H_{16}O_3$, enantiomeric pairs of molecules form dimers by mutual hydrogen bonding of carboxyl groups, with the ketone group not involved in the hydrogen bonding. The components of the dimer differ in conformation, so that the dimer is the asymmetric unit.

Comment

Our interest in simple keto carboxylic acids arises from their four known crystalline hydrogen-bonding states. The commonest retains the dimer pattern characteristic of almost all functionally unelaborated acids in which the ketone is not involved. Less commonly, intermolecular carboxyl-to-ketone hydrogen bonds repeat infinitely along one cell axis to yield a chain or catemer. A third rare arrangement is an internal hydrogen bond and one instance is known of acid-to-ketone dimerization. We have previously referenced and discussed many examples of these (Thompson, Lalancette & Vanderhoff, 1992; Coté, Thompson & Lalancette, 1996).

 γ -Keto acids constitute a class particularly rich in hydrogen-bonding types, with examples of dimers, internal hydrogen bonds and catemers of both the helical and translational type. Despite the expectation of an intramolecular hydrogen bond for the *cis* counterpart of the title compound (Pourahmady & Eisenbraun, 1982), it was found to crystallize as a centrosymmetric dimer (Choney, Holt, Pourahmady & Eisenbraun, 1983). We report here that the *trans* epimer, (I), also adopts

(I)

the common carboxylic acid dimer motif, but that the dimer components are crystallographically unrelated, leading to an unusually long cell dimension [40.748(6) Å] for such a small molecule (17 non-H atoms).

Friedel–Crafts acylation of benzene with *cis*-1,2cyclohexanedicarboxylic anhydride yields, as the immediate product, the less stable *cis*-keto acid (m.p. 413 K). Aqueous base epimerizes this to the more stable *trans* diastereomer (m.p. 427 K) (Scribner & Miller, 1965).

Fig. 1 presents a view of the asymmetric unit with its numbering scheme. The cell contains four asymmetric units (Z = 8), each consisting of a pair of conformationally distinct molecules of opposite chirality, reciprocally hydrogen bonded through their carboxyl groups, with no ketone participation in the hydrogen bonding. Each molecule, as expected, has its substituents equatorial to a chair cyclohexane and the two molecules in the asymmetric unit differ almost entirely in the rotational orientation of the benzene ring. The carboxyl group adopts a conformation relative to its ring H atom whose torsion angle is 31.9° for molecule A and 30.1° for molecule B. The torsion angle for the benzovl C=O relative to its axial ring H atom is 138.9° for molecule A and 141.0° for molecule B. Hence, the dihedral angles between the ketone and carboxyl planes are nearly identical in the two molecules, 73.0° in A and 70.2° in B. In molecule A, however, the dihedral angle of the aromatic ring relative to the ketone is 31.9° , whereas this angle is 9.7° in molecule B.

The carboxyl C—O bond lengths and C—C—O angles are found to be only slightly disordered, although